PHYSICAL REVIEW E 74, 061309 (2006)

Stochastic dynamics of a rod bouncing upon a vibrating surface

H. S. Wright, Michael R. Swift, and P. J. King
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
(Received 31 August 2006; published 27 December 2006)

We describe the behavior of a rod bouncing upon a horizontal surface which is undergoing sinusoidal
vertical vibration. The predictions of computer simulations are compared with experiments in which a
stainless-steel rod bounces upon a metal-coated glass surface. We find that, as the dimensionless acceleration
parameter I" is increased appreciably above unity, the motion of a long rod passes from periodic or near-
periodic motion into stochastic dynamics. Within this stochastic regime the statistics of the times between
impacts follow distributions with tails of approximately Gaussian form while the probability distributions of
the angles at impact have tails that are close to exponential. We determine the dependence of each distribution
upon the length of the rod, upon frequency, and on I'. The statistics of the total energy and of the translational
and rotational components each approximately follow a Boltzmann distribution in their tails, the translational
and rotational energy components being strongly correlated. The time-averaged mean vertical translational
energy is significantly larger than the mean rotational energy, and both are considerably larger than the energy

associated with horizontal motion.
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I. INTRODUCTION

This paper concerns the motion of a rod bouncing
upon a horizontal surface that is being vibrated in the vertical
direction z as z(f)=a sin(wt). In particular we consider the
nature of the motion found when the reduced acceleration
parameter '=aw?/g is substantially greater than unity. Here
g is the acceleration due to gravity. We shall examine in
particular statistical aspects of the rod behavior.

The motion of a spherical ball bouncing upon a vertically
vibrated surface has been studied extensively [1-7]. A ball,
initially resting upon the surface, will be thrown from it if I'
is greater than unity. It will then undergo bouncing behavior
determined by I' and by the normal coefficient of restitution
e, [8]. The explicit dependence on frequency can be removed
by scaling all times by the period of vibration.

For low values of ¢,, the sphere bounces once per cycle
for values of I' just exceeding unity, and period-doubling
bifurcations appear if I is slowly increased. The motion may
exhibit abrupt transitions into stochastic behavior at particu-
lar values of I', which depend upon e,. For values of e,
closer to unity the ball exhibits a single transition from a
lower-I" bifurcation regime into stochastic motion which per-
sists to higher I', save that in a limited number of narrow
ranges of I" just above the transition, periodic behavior may
be found [1,2,9,10].

Previous authors have derived an expression for the sta-
tistical distribution of energy of the bouncing ball in the fully
stochastic regime. They suppose that, when I is sufficiently
large and e, is sufficiently close to unity, there is negligible
correlation between the bouncing times of the ball and the
phase of the platform motion [4,5,11]. Tt is then predicted
that the probability P(E) of the ball having a rebound energy
E will have a tail proportional to exp(—E/E,), where
E,~ma*w*/(1-e,) and m is the mass of the ball. While this
result is broadly in line with experiment and with numerical
simulation, some additional structure is observed in both
[4,5]. This structure is due to partial correlation between the
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flight times between bounces and the vibration period. It is
evident even at substantial amplitudes of vibration.

The bouncing ball is a simple example of an “impact os-
cillator.” This class of strongly nonlinear system has me-
chanically driven components whose motion follows analytic
equations. This motion is interrupted from time to time by
abrupt impacts which map a preimpact set of system vari-
ables onto a new postimpact set. Many such systems have
been studied, including driven beams, multiple coupled
masses, or coupled pendulums that impact a rigid wall in
their motion [12]. Few analytical results are known for the
dynamics of many of these systems, particularly for statisti-
cal aspects of the motion, but they do share many common
behaviors. As with a ball bouncing on a vibrated platform,
these include periodic motion at low driving amplitudes, bi-
furcations at higher amplitudes, and the abrupt transitions
into stochastic motion at critical amplitudes of excitation,
sometimes the result of “crises” [10,13].

There is currently much interest in the bouncing behavior
of nonspherical objects, for which the rotational motion and
the vertical and horizontal motions of the center of mass are
strongly coupled and for which length scales are important
[14-19]. Large numbers of constrained rods moving on a
vertical vibrated horizontal surface are known to show a rich
variety of collective behaviors [17-19]. However, the behav-
ior of single objects is also of interest. The low-energy dy-
namics of a single dimer consisting of two spheres joined by
a rod have been studied in detail both in experiment and in
simulation [15,16]. When dropped upon a vertically vibrated
horizontal surface, such a dimer exhibits a number of distinct
periodic modes at values of I' less than unity. In one of the
modes the dimer bounces upon the surface without rotation.
In another mode it bounces with alternating rotation so that
the two spheres strike the surface in turn. In a third mode one
sphere undergoes larger-amplitude vibrations than the other,
the lower-amplitude sphere undergoing slip-stick motion.
The dimer then moves horizontally across the surface. In
each of these behaviors the angles involved are low and the
dynamics occur almost entirely in two dimensions. It was
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briefly noted that at values of I" above unity a vibrated dimer
undergoes “complicated hopping and tumbling” [16].

Here we report the dynamics of single rods bouncing on a
vibrated surface, principally studying the behavior for situa-
tions where I is appreciably greater than unity. In the labo-
ratory we observe that for some rod and surface materials the
motion is close to two dimensional over many periods of
vibration. For other systems the bouncing behavior shows
tumbling appreciably involving the third dimension. Here,
we restrict ourselves in experiment to a system consisting of
a cylindrical stainless-steel rod vibrated upon a metal-coated
glass surface, where the motion of the rod is effectively two
dimensional.

We have used both experimentation and numerical simu-
lation to study rod behavior. We observe that at values of I’
comparable to unity a rod exhibits a range of periodic and
near-periodic behaviors including those reported for dimers.
However, at a threshold value of I', which depends only
weakly upon the system parameters, the rod dynamics pass
abruptly from these periodic or near-periodic motions to sto-
chastic behavior. Above this threshold many features of the
behavior may be approximately described by continuous
statistical distributions of a simple form.

Simulations enable investigation of quantities that are not
readily accessible to experimental measurement. However,
the impact of a rod with a solid surface is far more difficult
to model accurately than the impact of a sphere. A collision
between a rod and a surface often excites flexural modes of
the rod, and these may lead to a number of successive rod-
surface impacts separated by very small intervals of time
[20,21]. The collision cannot accurately then be treated as a
single impact characterized by a small number of material
parameters.

In attempting to fit experimental observations some au-
thors have allowed model parameters such as e, to depend
upon the angle at impact between the rod and surface [22].
Here we have used a two-dimensional molecular dynamics
(MD) model, which treats the interaction between the rod
and surface through damped springs, allowing slip with a
single friction coefficient. We find that it offers an adequate
description of the principal experimental observations when
e, is suitably chosen. Comparison with experimental obser-
vations is used to justify use of the numerical model, and the
model is then used to develop our understanding of the rod
statistics.

II. EXPERIMENTAL TECHNIQUES

The experiments were conducted using stainless steel rods
of density 7900 kgm=>. They were of diameter d equal to 1.0,
2.4, or 3.2 mm, and of lengths L ranging from 6 to 24 mm in
steps of about 3 mm. Rods were prepared with hemispherical
ends having a radius of curvature of d/2, the surfaces being
polished with a series of diamond pastes of grades down to
1 um, making the surfaces optically smooth. The rods were
vibrated on an 8-cm-diameter glass telescope mirror, having
a radius of curvature of 0.8 m. This curvature is sufficient to
retain the bouncing rods on the surface of the mirror and to
ensure that the bouncing rods only impact the surface at their

PHYSICAL REVIEW E 74, 061309 (2006)

ends. The mirror is, however, sufficiently flat, on a length
scale d, for the detailed dynamics to be little affected by the
curvature.

It was observed that rods vibrated upon a bare glass sur-
face were somewhat affected by the static charge that built
up after extended periods of time. To eliminate such effects
the mirror was coated by evaporation with a 0.5-um-thick
layer of Nichrome, which was then electrically grounded.
Such a thin film is sufficiently hard not to be appreciably
damaged by the impact of the rods.

The mirror was vibrated by attaching it to an electromag-
netic transducer consisting of a coupled pair of long-throw
loudspeakers, arranged to ensure accurate one-dimensional
motion aligned within 0.2° of the vertical direction. The mo-
tion of the mirror was monitored using a capacitance accel-
eration sensor, while, in some parts of this study, the motion
of the rods was observed using a high speed camera, usually
operated at 1000 frames per second.

A piezoelectric transducer attached to the underside of the
mirror was used to detect rod impacts with the mirror. The
impulse signals were analyzed by a computer to yield infor-
mation, such as the times between bounces, used in our
analysis of rod statistics.

III. NUMERICAL SIMULATIONS

We have performed a series of numerical simulations of
the motion of a bouncing rod based on a simplified “soft-
sphere” molecular dynamics technique [19,23,24], designed
to capture the principal features of the motion. In this MD
model a rod is treated as a cylinder of unit mass, of zero
radius, of length L, and of moment of inertia given by
I=L?/12. Flexural modes of vibration are ignored. The rod is
assumed to move in two dimensions, having two transla-
tional degrees and one rotational degree of freedom. In flight
the motion of the rod is treated through the usual rules of
Newtonian mechanics. During collisions between the ends of
the rod and the vibrating plane surface, the normal forces are
treated using a linear spring having spring constant
K,=10"Nm™' [19]. A dashpot provides a damping force
proportional to the normal component of the collision veloc-
ity. The damping is adjusted to give the experimental values
of the coefficient of restitution discussed below. The tangen-
tial forces are treated in the following way. The end of the
rod is subject to tangential forces provided by an undamped
linear spring which is extended by the force. This linear
spring has a spring constant of K,=10° N m~'. If the tangen-
tial force exceeds the normal force multiplied by a static
coefficient of friction, then the contact slips, the tangential
force then being the normal force multiplied by a kinetic
coefficient of friction. In what follows we have set the two
coefficients to be equal and have generally used the mea-
sured static coefficient of friction of w=0.15. The model
allows for multiple slip-stick processes to occur.

Linear rather than Hertzian springs were selected follow-
ing experimental measurements of the normal coefficient of
restitution e, using a high-speed camera. Rods were dropped,
and their bounce observed. They were aligned so that their
principal axis remained vertical during the fall and first
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TABLE 1. The experimentally determined variation of the nor-
mal coefficient of friction with rod length, for polished stainless
steel rods of 2.4 mm diameter with rounded ends. The methods
used to determine e,, (bounce) and e,, (flip) are described in the text.

Rod length (mm) e, (bounce) e, (flip)

5.8 0.971+0.005 0.968+0.004
9.3 0.966+0.005 0.962+0.004
11.5 0.959+0.005 0.955+0.005
15.2 0.950+0.006 0.937+0.006
18.4 0.938+0.007 0.914+0.007
21.1 0.920+0.009 0.890+0.008

rebound. We found no significant variation of e, with initial
height, as would be the case with Hertzian contacts. We did,
however, note a systematic reduction of e, with increasing
rod length. In our initial simulations we therefore used the
measured value of ¢, e,(bounce), appropriate to the particu-
lar length and diameter of the rod being simulated. Simula-
tions were principally compared with experiments carried
out on rods of diameter 2.4 mm, the e,(bounce) for which
are shown in Table 1. The table also gives the measured rod
lengths. Later we obtained a set of somewhat modified val-
ues, ¢,(flip), also shown in Table I, by a technique that con-
siders impacts having a distribution of impact angles. This
technique is described below.

IV. ROD DYNAMICS
A. The onset of stochastic behavior

In experiment we observe a number of periodic and near-
periodic motions at lower values of I', the behavior depend-
ing upon the past history of the frequency and I" as well as
the current values. Modes similar to those noted for dimers
[15,16] are easily excited and are evident for higher values of
I' if shorter-length rods are used. We observe an abrupt tran-
sition from periodic or near-periodic behavior to stochastic
motion as I' is increased. If L/d >4, the motion above the
transition appears to be stochastic in nature for all higher
values of I'. The onsets for the stochastic motion were stud-
ied over rod lengths 6-21 mm and frequencies from
20 to 120 Hz. For the 3.2, 2.4, and 1.0 mm diameter stain-
less steel rods they lie in the ranges I'=1.03-1.13,
I'=1.10-1.20, and I'=1.14—1.24, respectively. However, for
L/d<4 and for lower frequencies of vibration, episodes of
low-angle near-periodic motion occur between more ex-
tended periods of stochastic oscillation for a range of T’
above the onset, the phenomenon of intermittancy [10]. For
very short rods the dynamics only become continuously sto-
chastic at considerably higher values of I' than that of the
first observation of stochastic motion.

We have used numerical simulations to study in some
detail the onset of this stochastic behavior. Using the MD
model we observe a number of periodic or near-periodic
modes both for values of I" just above unity, and for values
below unity if motion has been initiated by taking I' above
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unity and then reducing its value. This is as observed in
experiment. If vibration is abruptly applied or if the vibratory
conditions are changed, the motion generally settles into one
of these modes after a number of bounces. For any particular
rod, the equilibrium mode observed is dependent not only
upon the current values of frequency and I" but upon the
recent history of these variables. At lower values of I', the
periodic modes noted by Dorbolo et al. for dimer motion
[15,16] are common, including the symmetrical mode in
which each end of the rod bounces in turn and the asymmet-
ric slip-stick mode in which the rod moves across the
surface.

At values of ' above unity a number of other modes are
frequently encountered. One of these is an asymmetric mode
in which one end of the rod contacts the surface twice at
different angles followed by the other end touching, this se-
quence of three bounces being repeated. The mode may be
periodic, the angles repeating exactly, or it may be near-
periodic the contact angle showing a small variation about a
mean. Other near-periodic modes involving longer sequences
of closely repeated bounces are found. During one type a
sequence of 2n bounces occurs. There is a sequence of n
distinct angles of contact involving the two ends of the rod.
This is followed by a mirrored sequence of n bounces in-
volving the opposite ends of the rod. The whole sequence of
2n bounces repeats closely but not exactly, the contact angles
showing slight variations about their mean values. These
longer sequences are commonly seen in simulation but more
difficult to identify in laboratory experiments.

If T is slowly increased, the simulated motion abruptly
changes from periodic or near-periodic to acquire a stochas-
tic nature, as noted from experiments. At the same time, the
impact angles increase appreciably. A typical example of
such a transition is shown in Figs. 1(a) and 1(b), for a rod of
length 15.2 mm, and e,=0.95, vibrated at 60 Hz. The data of
this figure were obtained from MD simulation as follows.
For a number of values of I' between 1.0 and 2.3 the rod was
dropped from a small height, being initially tilted at a small
angle to the surface. Bouncing motion was then allowed to
develop for 60 s to remove the influence of the initial con-
ditions. The impact angles 6 of a number of following
bounces were then recorded and plotted against I'. It may be
seen from Fig. 1(b) that at small values of I' the motion
principally involves only a few discrete impact angles, cor-
responding to periodic or near-periodic behavior. A detailed
examination of this and similar data shows that both near-
periodic three-bounce asymmetric modes and 2n modes with
n=4-6 are common. The impact angles are low. However, it
may be seen that at I'=1.219 an abrupt change takes place.
Above this value of I' the motion loses its periodic or near-
periodic character and the motion adopts a stochastic char-
acter, a broad range of angles being involved. The stochastic
behavior no longer depends upon the past history of fre-
quency and I' but only upon the current values. Above the
onset the behavior is uniformly stochastic save for a few very
narrow bands of periodic or near-periodic behavior that oc-
cur for selected initial conditions and for values of I" not far
above the transition to stochastic behavior; such behavior is
seen in Fig. 1(a) for I'~ 1.65. However, we have been unable
to observe in experiment these extremely narrow bands. This
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FIG. 1. The impact angles found at a set of values of I, plotted
versus I', for a rod of length 15.2 mm and ¢,=0.95, vibrated at a
frequency of 60 Hz. The data were obtained from numerical simu-
lation using the methods and parameters described in the text and
show the transition from periodic or near-periodic behavior to sto-
chastic dynamics. The onset of stochastic motion at '=1.219 is
clearly evident. (b) is an expanded view of (a), covering the I" range
from 1.1 to 1.225.

may be due to geometric imperfections in the rods.

In MD simulation we find that the onset of stochastic
motion occurs at values of I which vary only slowly with
frequency and rod length over the ranges studied,
20-120 Hz, and 6-21 mm, respectively. The value of I' at
onset increases with decreasing e,. Using values for
e,(bounce) corresponding to the 2.4-mm-diameter rod the
onsets typically lie in the range 1.15<I"<<1.28.

We note that, since our simple model does not contain the
rod diameter, it cannot be expected to capture the switching
between stochastic and near-periodic behavior observed ex-
perimentally for short rods. In this paper we are interested in
the regions of fully stochastic rod dynamics and we only
touch lightly upon measurements made at low frequencies
and low values of I' for rods such that L/d<<4.
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FIG. 2. The experimentally observed values of 'y, for which
the mean flipping rate is one per minute, as a function of frequency
for rods having a diameter of 2.4 mm. The rod lengths are as fol-
lows: A 21.1 mm, +18.4 mm, ¢ 15.2 mm, X11.5 mm, [J 9.3 mm,
and O 5.8 mm. For the 5.8 and 9.3 mm rod lengths we observe
periods of low-angle near-periodic motion between longer periods
of stochastic motion at low frequencies. Where this occurs no data
are shown.

B. The observation of flipping

One convenient feature of the rod dynamics that may be
obtained both from numerical simulation and from experi-
mental observation is the rate of occurrence of end over end
flipping during flight. We observe both in simulation and in
experiment that the rate of flipping, in which the rod passes
through the vertical position, increases very rapidly with in-
creasing I' (Fig. 1). It is therefore very easy to determine that
value of I', I'g;p,, at which the mean flipping rate acquires any
particular value. For convenience we choose a mean flipping
rate of one flip per minute.

Figure 2 shows the experimentally determined values of
Iy for this flip rate as a function of frequency and for a
number of rod lengths each having a diameter of 2.4 mm. We
have not included low-frequency data for the shortest rod
lengths for which continuous stochastic behavior is not
found. It may be seen that for each L the data closely follow
a straight line which passes through the origin. This suggests
that the flipping rate is proportional to the peak platform
velocity. ', increases more rapidly than linearly with rod
length L. Data having the same features have also been ob-
tained for rods of diameter 1.0 and 3.2 mm. The values of
I"ip(100 Hz) corresponding to a mean of one flip per minute
measured at 100 Hz, have been plotted against rod length in
Fig. 3. Here it may be clearly seen that for each diameter of
rod, I'g;,(100 Hz) increases somewhat more rapidly than lin-
early with rod length and that the data for smaller rod
diameters lie on a higher curve.

The data corresponding to Fig. 2 but obtained from nu-
merical simulation using the MD model are shown in Fig. 4.
Figure 4 also shows, as an inset, the number of flips within
a 600 s period, N, plotted against I for L=15.2 mm and
each of three frequencies. It is seen that Ny increases very
rapidly with I" making clear the ease with which I'g;, may be
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FIG. 3. The observed values of I'g;, for which the mean flipping
rate is once per second at a frequency of 100 Hz, plotted against rod
length for three rod diameters: [ 1.0 mm, O 2.4 mm, and
A 3.2 mm. The solid lines are guides to the eye. The data from MD
simulation using the experimental ¢, (bounce) data for 2.4 mm di-
ameter rods are shown as a broken line.

determined either in experiment or in simulation. In Fig. 4
the restitution values e,(bounce) have been used. For each
rod length, I, varies almost linearly with frequency, as was
true for the experimental data. At any particular frequency
Iy increases slightly more rapidly than linearly with rod
length, as is clear when the I'p;,(100 Hz) numerical data
from Fig. 4 are plotted against rod length in Fig. 3 (broken
line). From simulation the reason for this behavior is evident.
If e, is kept constant then the relationship between
I'ip(100 Hz) and rod length is approximately linear. How-
ever, we have noted from experiment that e,(bounce) falls
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Frequency (Hz)

FIG. 4. The values of I'y;, for which the mean flipping rate is
one per minute obtained from MD simulation, as a function of
frequency. The rod lengths are as follows: A 21.1 mm, +18.4 mm,
O 152 mm, X11.5mm, and [09.3 mm. In the simulations
n=0.15 and the measured e, (bounce) for rods of diameter 2.4 mm
have been used. The inset shows the number of flips, N, found in
a period of 600 s versus I" for 40 (a), 60 (b), and 80 Hz (c), illus-
trating the abruptness of the dependence upon I'. The inset data are
for L=15.2 mm.
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with increasing rod length (Table I); this has been included in
our simulations. Since increased dissipation increases the
value of I' needed to cause flipping, the data of Fig. 3 show
a dependence on rod length which is stronger than linear.
The data of Fig. 3 for the 2.4-mm-diameter rods suggest
that better agreement between simulation and experiment
may be obtained by somewhat increasing the dissipation in
simulation, by an amount that depends upon rod length. The
effective coefficient of restitution of a rod is known to vary
somewhat with impact angle [22]. We therefore chose to de-
crease e, while the friction coefficient w retains its measured
value. Bringing simulation into agreement with the experi-
mental data of Fig. 2 in this way offers the new set of e,
e,(flip), given in Table I. These values offer an overall im-
provement in the predictions of the MD model and will be
used in what follows. The improvement offered by e, (flip)
over e¢,(bounce) in predicting dynamics involving a wide
range of impact angles is to be expected since the flipping
process itself involves a wide range of impact angles.

C. The statistics of the times between impacts

On each occasion when the rod impacts the vibrating mir-
ror, the piezoelectric transducer attached to the rear of the
mirror picks up a transient wave form which lasts for about
1 ms. These signals have been used to obtain the statistical
distribution of times between adjacent collisions as follows.
The transducer output is passed through a high-pass filter to
remove traces of the vibratory wave form and is then ac-
cessed by an analysis computer. The computer detects when
the voltage wave form rises through a level above the elec-
tronic noise, and notes this as an impact time. After a dead
time of 1.5 ms, just longer than an individual impact tran-
sient, impact detection resumes. A succession of impact
times are sent to a file for subsequent analysis. In particular,
sequences of about 10° impacts are analyzed to provide the
probability P(7)dT of times between successive impacts, 7,
in the range 7 and 7+d7. Note that this technique cannot be
used to measure times between impacts of less than the dead
time.

Figure 5 shows typical experimental probability distribu-
tions, plotted on a log-linear scale. Data for L=11.5 mm,
f=50 Hz, and I'=2.5 and for L=21.1 mm, f=50 Hz, and I"
=3.25 are shown. Rods of diameter 2.4 mm were used. In
each case P7) is seen to fall increasingly rapidly as 7 is
increased. The continuous lines are fits to the Gaussian func-

tion
7 \2
PT(T)~eXp[—<—) } (1)
70

where 7 is an appropriate constant. In each case the fit is not
perfect and the data not only lie above the Gaussian form for
small values of 7, but show significant oscillatory fluctua-
tions about the Gaussian trend at higher values of 7. We have
investigated the experimental behavior for many values of L,
I', and @ and find that in each case the higher-7 behavior
may approximately be fitted to Eq. (1), but that in each case
there are significant oscillatory deviations from this form.
Figure 5 also shows the predictions of the MD model using

061309-5



WRIGHT, SWIFT, AND KING

To(S)
o
; S :
T
.
=3 L
ST IR BRI

—
<
T T

sl vl sl

L 1 " "
107 0.05 0.1 0.15
T(s8)

FIG. 5. The probability distribution P,(7) of the times between
successive impacts, 7, plotted on a log-linear scale. The experimen-
tal data for L=11.5 mm, f=50 Hz, and ['=2.5 are shown as X,
while the corresponding simulation data are shown as O. The ex-
perimental data for L=21.1 mm, f=50 Hz, and I'=3.25 are shown
as +, while the corresponding simulation data are shown as [1. The
continuous lines are fits to the higher-7 data using the Gaussian
expression Eq. (1). The arrows indicate structure that is separated in
7 by the period of vibration. The inset shows, from simulation, the
effect on 7 of varying 1-e,, keeping all other parameters constant.

e,=e,(flip). It may be seen that the model not only predicts
the general trend of the data very well, but also reproduces
much of the oscillatory structure. This agreement gives us
further confidence in the use of our model.

The oscillatory structure found in P,(7) is always found to
occur at values of 7 separated by the period of vibration. This
may be seen from Fig. 5, where the arrows indicate dips in
the data separated by 0.02 s, the period of 50 Hz vibration.
Thus, even in the stochastic regime there is some correlation
between the impact times and the motion of the platform.
This influence weakens at higher " but is always present.
This mirrors similar correlations found in the behavior of the
bouncing ball [5].

Over the full range of rod lengths that we have studied
and from 40 to 120 Hz the Gaussian form fits the general
trend of the data well enough for the functional dependence
of 7y to be determined. We find from experiment and
simulation the approximate dependence

aw

Cr Denm)’ @

To=

Here C, is a numerical constant and the function D is a
dimensionless damping parameter. To within the accuracy
that we can fit Gaussian expression Eq. (1) to simulation data
there is no significant dependence of 7, upon rod length over
the range that we have used.

The damping parameter D increases monotonically
with 1-e, and, for low values of u, with u. However, it
is a complicated function of these two variables, and is not
linear in either, except at vanishingly small values of the
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FIG. 6. The probability P(|6]) of observing an impact angle
plotted on a logarithmic scale against |6|. The data have been ob-
tained from numerical simulation using the MD model. The + data
are for L=21.1 mm, I'=4.0, and 90 Hz, the O data are for
L=152 mm, I'=2.25, and f=70 Hz and the X data are for
L=15.2 mm, I'=3.0, and f=70 Hz. The straight lines are fits of the
tails of the distributions to Eq. (3).

dissipation. The inset to Fig. 5 shows the corresponding
variation of 7, with 1-e¢,, keeping all other parameters fixed.

D. The statistics of the angles of impact

Both in experiment and in simulation we observe a tran-
sition from motion involving just a few discrete impact
angles to motion described by a broad range of angles above
the threshold for stochastic behavior. The range of impact
angles broadens as I is further increased, as may be seen in
Fig. 1(a). We have studied, in MD simulation, the stochastic
nature of the motion seen above the transition for a wide
range of the system parameters and find that, in each case,
the distribution of angles is continuous. We obtain the prob-
ability distribution P(|6|)d@ of the impact angle @ lying in
the range @ to 6+d6. If the logarithm of the probability
P(]6]) of observing an impact is plotted against |6| behavior
close to linear is widely observed except for very low impact
angles. That is, P,(|6]) may be adequately described by

0
Py(l6)) ~ eXP(— U)

m
0 <—, 3
5) 10 ®)

2

where 6, is a function of the system parameters. The usual
definition of impact angle implies a folding of the distribu-
tion about f=/2. Deviation from exponential form will
therefore occur as |6| approaches /2. Figure 6 shows
log,o(P4(]6])), plotted against || for three sets of the system
parameters. In each case g=9.81 ms~2, m=0.15, and the val-
ues of ¢,(flip) given in Table I appropriate to the rod length
have been used. For the two sets of data shown, that is, for
L=21.1 mm, I'=4.0, /=90 Hz and for L=15.2 mm, ['=3.0,
f=70 Hz, the behavior is close to linear over several decades
of log;o(Py(|6])), except at very low angles where the simu-
lation data display an excess of low-angle collisions over the
exponential form. Statistical behavior of this form is widely
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observed. We have used the MD model to determine the
dependence of the constant 6, upon the principal parameters
of the problem and conclude that the impact angle behavior
is adequately described by

g('-1)

- 4
oszD’(en,,u) @

0
where Cyis a constant and D’ (e,,, u) is a dimensionless func-
tion describing the impact damping of the rod. Again D’ is a
complicated function of ¢, and .

While, except for very low impact angles, the impact sta-
tistics broadly follow Eq. (3) for a wide range of the system
parameters, a closer examination shows fine structure devia-
tions from this mean behavior. At lower values of I', for
shorter rods, and for greater impact damping this structure
may be pronounced. Figure 6 also shows data for
L=15.2 mm, I'=2.25, and f=70 Hz. While the data show a
broadly linear trend, following the dependence just given,
steplike structure is now very evident. We believe that this
structure results from the correlation between the times of
bouncing and the phase of the platform vibration, noted in
our studies of the time between bounces.

It is also interesting to consider the extent to which suc-
cessive impact angles 6 are correlated. This may be investi-
gated through the correlation parameter Q(m) given by the
expression

N

N 2
(N2 0,0, — ((1/1\/)2 en)
1 1

Q(m) = N N Nz - &)
1 1

The sum is over the impacts within a sequence of N impacts.
We find that the dependence of Q(m) upon m is usually close
to exponential; Q(m)~ (1/mg)exp(-=m/mg). We find that my
is not a strong function of parameters such as frequency and
I', and is of order my=~6-10. Correlation is lost typically
over six to ten bounces.

E. The energy probability distributions

A bouncing thin rod moving in two dimensions has two
translational degrees and one rotational degree of freedom.
We now consider in simulation the probability distributions
of the total energy and the energy associated with each de-
gree of freedom. In our simulations we have considered the
rod to have unit mass; the energies quoted are therefore also
per unit mass. For a particular rod length, frequency, and T,
a MD simulation was allowed to run until the initial condi-
tions no longer influenced the motion. The values of the
three energies E,, E,, and E,,, found just after each of a large
number of subsequent collisions were then noted and the
corresponding energy distribution functions P,,(E,,),
P(E,), P.(E.), and P,,(E,,) deduced. Here EX=%mvi is the
kinetic energy associated with the motion of the center of
mass at velocity v, in the horizontal direction, x. Corre-
spondingly, E, = %IQ2 is the energy associated with rotation,
where () is the angular velocity. These energies are constant
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FIG. 7. The total energy probability distribution obtained from
simulation plotted on a log-linear scale against total energy for a
rod of length 15.2 mm, f=50 Hz, u=0.15, ¢,=0.937, and for
I'=3.0 (O), 6.0 (X), and 9.0 (+).

during flight. In the case of the vertical direction z, it is the
sum of the kinetic energy %mv? and the potential energy in
Earth’s gravity, mgz, which is constant during flight. Here z
is the height of the center of mass of the rod with respect to
some chosen reference height. We take £, to be the kinetic
energy immediately following collision since the potential
energy associated with the variable height of the impact
point is negligible [5]. The total energy E,,, is then the sum
of the three kinetic terms that we have just identified. It is
possible to define two types of energy probability distribu-
tion. The first considers the probability distribution of the
energies that occur following collision. The second considers
the probability distribution of the energies throughout time
and involves weighting the energy following collision by the
time to the next impact. Following Warr ef al. [5] we con-
sider the first, unweighted type of distribution here.

First we consider the total energy probability distribution
P,,(E,,). Some typical MD data are shown in Fig. 7, here for
L=15.2 mm, f=50 Hz, and three values of I. It is seen that
in each case P,,(E,,) falls at low energies. We have been
unable to find a simple functional form that satisfactorily fits
the data over the entire range. However, the high-energy tail
can be fitted to a simple exponential,

Pl Eror) ~ exp|:_ (im> :| > (6)
0

where E| is a constant. We have carried out MD simulations
for a wide range of the system parameters and fitted the data
to Eq. (6) in each case in order to determine the factors upon
which E, depends. It is found approximately that

a’w’

D”(en’ M) '

where the dissipation function D” is again a complicated
function of e, and w. There is no appreciable dependence of
E, upon gravity or upon the rod length. The Gaussian form
of flight-time distribution, Eq. (1), is consistent with the

Ey=Cg (7)
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FIG. 8. The functions P.(E,), P.(E,), and P,,(E,,) obtained
from simulation plotted on a log-linear scale against their corre-
sponding variables for the case of L=15.2 mm, a frequency of
50 Hz, and I'=6.0. The x data are shown as X, the z data as +, and
the rotational data as O. The lines are fits to the data using Eq. (8).

observed Boltzmann tails of the energy distributions, as
flight times scale linearly with launch velocities.

Typical results for the corresponding probability distribu-
tion functions P(E,), P.(E.), and P,,(E,,;) are shown in Fig.
8. In each case the probability of observing a given energy
has a sharp maximum at zero energy and falls rapidly as
energy increases. A fit to the data using a form

P(E) ~(E+6)¢ exp{— (5)} (8)

0

is also shown on the figure. In each case a good fit may be
obtained over the entire range, the parameter « taking the
values 0.5, 0.2, and 2.0 for vertical translational, rotational,
and horizontal translational energies, respectively. The cutoff
parameter o takes corresponding values 0.005, 0.001, and
0.0015 in units of J kg™!. These cutoffs are necessary as the
probabilities have nonzero values for E=0.

It is noteworthy that the distribution function for the total
energy dips at zero energy, while the distribution functions
for the three components exhibit maxima. This demonstrates
strong correlations between the energy components. When
one component is high, the others are likely to be small.
There is a very low probability of all three components being
large at the same time. A detailed study of the MD data
confirms this correlation.

Finally we consider, using data from simulation, the pro-
portions of energy associated with the three degrees of free-
dom of the rod. This may be determined from the energies
following collision by taking averages of E,, E,, and E,,,
over very many collisions. It is then found that the propor-
tions of the energies associated with horizontal, vertical, and
rotational motion are typically in the proportions 2:54:44.
These ratios only vary weakly with the system parameters.
Alternatively it is possible to consider the time-averaged pro-
portions, in which an energy after collision is weighted by
the time to the next impact. The corresponding proportions
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are then about 3:77:20. The difference between these two
sets of ratios indicates a strong correlation between the
energies and the times between impacts.

Thus it may be seen that the mean energies following
impact are almost equally distributed between rotation and
vertical center of mass motion, there being far less energy
associated with horizontal motion. However, if time-
averaged energies are considered then the energy associated
with vertical motion dominates the rotational energy. The
time averaged energy of horizontal motion is still a very
small proportion of the whole.

V. DISCUSSION

A long rod is a geometrically simple object but the current
study has shown that the high-energy dynamic behavior of a
rod when bounced upon a vertically vibrating surface is com-
plex. We have studied this behavior both in experiment and
in simulation. It has been shown that a MD model is capable
of describing quantitatively much of the experimentally ob-
served behavior provided that the friction and restitution pa-
rameters are suitably chosen. This model has then been used
to study those features that are more difficult to observe
experimentally.

We have shown that the rod dynamics change from being
periodic or near periodic to being stochastic in nature above
a threshold vibration amplitude. This behavior is commonly
found in impact-oscillator systems [12]. In simulation there
are narrow ranges of I' above this threshold where narrow
windows of periodic motion are found. In experiment sto-
chastic behavior is observed for all higher I', probably due to
small imperfections in the rod geometry. We have studied the
probability distributions for various properties such as the
time between impacts, the angle of impact, and the energies.
The fine structures observed in these distributions for values
of I' above the onset of stochastic behavior reduce as I is
increased and for values substantially above threshold, rea-
sonably smooth distributions are found. The structures are
due to correlations between impact times and the phase of
the platform vibration. We have then studied the way in
which these distributions depend upon the system parameters
such as I, frequency, gravity, and rod length.

What understanding do we have of these distributions?
Even in two dimensions the motion of a rod involves two
linear coordinates and one rotational coordinate plus the cor-
responding linear and angular velocities. A collision maps a
set of preimpact velocities onto a postcollision velocity set.
However, this mapping is complex, involving the impact
angle and details of the frictional interaction with the sur-
face. As is the case with impact oscillators in general, any
analytical treatment is challenging.

It is interesting to compare the behavior that we have
observed for a rod with the corresponding behavior of a
spherical bouncing ball. The exponential form Eq. (6), which
we have used to describe the tails of the postcollisional en-
ergy distributions, is just that used by Warr et al. [5] to de-
scribe the postcollisional energies of a ball over the entire
energy range which they studied. Our expression for E, Eq.
(7), has the same form as that used for a ball save that the
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dissipation parameter for a rod has a far more complicated
dependence upon e,. For the simpler problem of the bounc-
ing ball, Warr et al. derived a Boltzmann energy distribution
by initially considering high-energy impacts and supposing
that in hitting the vibrating platform knowledge of the phase
of the vibration at impact is lost [5]. Collisions therefore act
as a source of noise and a Langevin description of the motion
can be used. An additional collision term, included since at
lower energies the ball is more likely to hit the platform
during upward movement than during downward movement,
gives rise to a power-law prefactor. However, for the case of
the bouncing rod, a detailed understanding of the low-energy
collisional behavior is still lacking, due to the coupling be-
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tween translational and rotational degrees of freedom. Our
findings thus suggest that a Langevin description of the
dynamics may still be applicable, but the additional com-
plexity introduced by rod rotation makes this a demanding
task.
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